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Abstract –The amphibious robot needs to accurately
estimate the 6D pose of the target in tasks such as target
tracking, docking with the recovery module, and target grasping.
The current research on target 6D pose estimation is mainly
applied to unoccluded targets, but when the target is occluded,
the target's pose cannot be accurately identified. Compared with
other algorithms, the PVNet algorithm shows better robustness
when target is occluded, but the accuracy is still low. To improve
the accuracy of the PVNet algorithm, this paper adds the
confidence score prediction of the prediction vector at the last
layer of the PVNet network, and designs a vector confidence
score loss function to train the network. Before generating the
hypothetical keypoints, the pixels whose confidence score is
lower than the set threshold are screened out, so that the
generated hypothetical 2D keypoints are closer to the true 2D
keypoints. Finally, the method in this paper is compared with the
Tekin, PoseCNN, Oberweger and Pvnet algorithm, and
demonstrate the superiority of the proposed method.

Index Terms –6D target pose estimation, PVNet, Amphibious
robots, Semantic segmentation.

I. INTRODUCTION

One of the key technologies of amphibious robots is to
be able to perceive the surrounding environment. Common
2D target detection can only provide two-dimensional plane
position information and target category information of the
target,but three-dimensional spatial information of the target
cannot be obtained.In the amphibious robot to perform target
tracking[1], recovery docking, target grasping and other tasks,
the 6D pose of the target can help the amphibious robot
realize the position and direction of the target for the robot's
next operation and decision.Therefore, it is great significance
to accurately identify the pose information of the target.

In recent years, target pose estimation methods based on
deep learning have shown more computationally efficient and
robust than traditional methods. The method based on deep
learning has become the main research direction of target pose

estimation.There are three main methods of target 6D pose
estimation based on deep learning. The first is a method based
on feature correspondence.In the case of knowing the
complete 3D model of the target, the 2D pixel points of the
input image are corresponding to it, and the 6D pose is
solved from the 2D-3D correspondence. In the feature
correspondence method, the most typical pose estimation
networks are BB8[2] and YOLO-6D[3]. They project the
vertices of the 3D bounding box onto the 2D plane to obtain
the 3D-2D point-to-point relationship, and then use PnP
algorithm to solve the 6D pose.The second is the 6D pose
estimation method based on pixel voting. In a scene with
severe occlusion, the overall pose is judged by the local
feature of the target. The feature points corresponding to the
3D points or each pixel can be used to vote to obtain the 2D-
3D correspondence. Among the voting methods, the most
typical pose estimation networks are PVNet[4], DPVL[5] and
Pix2pose[6].The principle of the PVNet network is to regress
the vector field pointing to two-dimensional keypoints, and
use these vectors to vote on two-dimensional keypoints based
on the RANSAC algorithm. It can show strong robustness
even when the target is occluded. Different from the PVNet
network, the DPVL network uses the DNN(Deep Neural
Network) to estimate the vector field pointing to the two-
dimensional keypoints, and considers the distance between
the voting pixel and the keypoints when voting. The biggest
innovation of this method is propose a new loss function is
used to estimate vector fields pointing to 2D keypoints.
Pix2Pose, is a 6D pose estimation method for untextured
targets. For untextured targets, an auto-encoder architecture is
designed to estimate the 3D coordinates and the expected
error per pixel. The 2D-3D correspondence is then formed
using pixel-wise prediction in multiple stages to achieve the
goal of directly predicting the 6D pose using PnP algorithm
and RANSAC iterations.For the occlusion problem, use the
Generative Adversarial Network (GAN) to accurately restore



the occlusion part. For the symmetry problem, a new loss
function is proposed for 3D coordinate regression, by guiding
the predicted pose to the closest Symmetric Pose to handle
pose estimation of symmetric targets. The third is the
regression-based 6D pose estimation method. At present,
there are many methods proposed to directly regress the
position and pose of the target from the RGB image. Among
the regression methods, the most typical pose estimation
networks are SSD-6D[7], Pose CNN[8] and Deep-6DPose[9].
SSD-6D is to extend the 2D target detection network SSD[10]
to 3D detection and 3D rotation. Pose CNN decouples 6D
pose into three subtasks of semantic segmentation, translation
estimation, and rotation estimation. The Deep-6DPose
algorithm is to recover the 6D pose of target from a single
RGB image. This framework greatly improves the efficiency
by extending the segmentation network Mask R-CNN[11] and
introducing a pose estimation branch to directly regress the
target 6D pose without any subsequent pose refinement.
Aiming at the non-differentiable and constrained problems of
pose regression loss, this framework decouples the pose task
into two subtasks of translation and rotation, and performs
rotation regression through Lie algebra, which makes training
easier, and the pose regression loss tends to close to
expectations.

Due to the complex working environment of amphibious
robots[12], the target is easily occluded. The 6D pose of the
target cannot be accurately recognized, which will lead to the
failure of the autonomous operation of the amphibious robot.
At present, the PVNet 6D pose estimation algorithm shows
good robustness when the target is occluded, but it can only
be completed on the host computer, and it is difficult to
guarantee real-time performance on the embedded side. Also,
when the target is occluded, the accuracy is still low, so it is
necessary to improve it.

II. THE OVERVIEW OF AMPHIBIOUS ROBOT PLATFORM

The 6D pose recognition system of occlusion targets for
spherical amphibious robot consists of a spherical amphibious
robot and a subsystem for 6D pose detection of occlusion
targets. The hardware structure of the spherical amphibious
robot is shown in fig 1. It is made up of four water jet motors,
a spherical inner cabin and eight steering gears. On land,
adjust the gait and attitude by controlling eight steering gears.
Underwater, the underwater motion and attitude control are
accomplished by controlling four water jet motors[13]. The
6D pose estimation system of occlusion targets is
encapsulated in the spherical inner cabin. It consists of
STM32F429 main control board, driver module, image
acquisition module, power module and edge computing
control board Raspberry Pi. The Raspberry Pi adopts a
heterogeneous structure composed of CPU (Central
Processing Unit) and GPU (Graphic Processing Unit). A 6D
pose estimation algorithm is installed inside to detect the 6D
pose of the target in the RGB image. The GPU is used to
assist the CPU in accelerated calculation.

The specific process of the occlusion target 6D pose
estimation system is: the STM32F429 main control board first

transmits the RGB image collected by the image acquisition
module to the edge computing control board Raspberry Pi
through the UART serial port. The edge computing control
board Raspberry Pi uses the internal target 6D pose estimation
algorithm to estimate the 6D pose of the target in the RGB
image. Then the 6D pose detection results are transmitted to
the STM32F429 main control board through the UART serial
port. Finally, the STM32F429 main control board controls the
amphibious robot to take the next step according to the 6D
pose of the target.

Fig. 1 Structure of spherical robot.

III. RESEARCH ON 6D POSE ESTIMATIONALGORITHM FOR
OCCLUSION TARGETS

A. Network architecture
The spherical amphibious robot uses the PVNet

algorithm to complete the 6D pose recognition of occlusion
targets. To improve the accuracy of the 6D pose estimation of
occlusion targets, this paper have improved the PVNet
algorithm. Fig 2 shows the structural diagram of the PVNet
network. PVNet adopts an encoder-decoder structure. The
encoder layer is ResNet-18 network structure, which is used
to downsample the input RGB image to extract features, and it
consists of five stages. The first stage is made up of a
convolutional layer and a max pooling layer. The last four
stages are all composed of residual network blocks, and each
stage contains two residual network blocks. And the fourth
stage and the fifth stage use the atrous convolution of rate=2
and rate=4 to replace the standard convolution.The decoder
layer is used to restore the feature map resolution after
downsampling the RGB image for feature extraction in the
encoder layer. It consists of 5 convolution layers and 3
bilinear interpolation upsampling layers.Input a picture of
� ×� × 3 to the PVNet network, the encoding layer
downsamples the input picture to obtain a feature map with a
size of �/8 ×�/8 , and then restores the resolution of the
feature map through the decoding layer until the feature The
graph size is restored to � ×� . Finally, we apply a 1 × 1
convolution on the feature map to output a tensor of H ×W×
(9 × 2 + 9 × 1 + 2) . The prediction results of semantic
segmentation, vector field pointing to two-dimensional
keypoints of RGB target and vector field confidence score are
obtained. Where H and W represent the height and width of



RGB images, 9 × 2 represents the channel occupied by the
vector field in which each pixel points to 9 two-dimensional
keypoints in the RGB image, 9 × 1 represents the channel
occupied by the confidence score of the vectors pointing to 9
two-dimensional keypoints per pixel, and 2 represents the
channel occupied by the semantic segmentation prediction
result. Compared with the original PVNet algorithm, our
proposed method adds the confidence score prediction to the
vector at the last layer of the network.

Fig. 2 The structural diagram of the PVNet network

According to the obtained semantic segmentation
prediction results, the prediction vectors belonging to the
pixel of the target are voted based on the random sampling
consensus algorithm to obtain the coordinates of 9 wo-
dimensional keypoints.Specifically: first select the pixels
belonging to the target. Filter out the pixels whose vector
confidence score is lower than the set threshold, and keep the
pixels whose vector confidence score is greater than or equal
to the set threshold. Then randomly select the prediction
vectors of two target pixel points, calculate the intersection
point of the two prediction vectors, and use it as the
hypothetical keypoint ℎ�,� for the two-dimensional keypoint
�� . By repeating this step N times, N hypothetical keypoint
sets of the two-dimensional keypoint �� can be obtained,
namely: ℎ�,�|� = 1,2,⋯� , and finally all the pixels belonging
to the target vote for the hypothetical keypoints. If the cosine
value of the angle between the direction from the pixel to the
hypothetical point ℎ�,� and the direction of the pixel prediction
vector ���(�) is more than the set threshold, the weight of the
hypothetical point is increased by one, and finally the
coordinate of the hypothetical keypoint ℎ�,� with the highest
weight value is taken as the two-dimensional keypoint ��
predicted coordinates.

Using the coordinates of 9 keypoints on the 3D model of
the target object and the coordinates of 9 two-dimensional
keypoints projected on the RGB map of the target object, the
corresponding relationship between 2D points and 3D points
is obtained. Calculate the 6D pose of the target object
relative to the camera through the Uncertainty-driven PnP[4]
algorithm.

B. Implementation details
The 6D pose estimation algorithm PVNet for occlusion

targets of the spherical amphibious robots mainly includes the
following steps:

Step 1: Calculate the 3D coordinates of 9 keypoints of
the 3D model of the target through the FPS (Farthest Point
Sampling) algorithm, and the initial point is the center point
of the 3D target.

Step 2: Use Miniconda to build the PyTorch1.1.0
environment on the upper computer. The PVNet network is
trained in the PyTorch1.1.0 environment to learn the mask
information of the target object projected into the two-
dimensional RGB image, the vector field pointing to the two-
dimensional keypoints and the confidence of the vector. After
the training is completed, the model parameter file is
generated.

Step 3:The PVNet algorithm and the model parameter
files generated in step 2 were transplanted to the edge
computing control board Raspberry Pi, and the construction of
the 6D pose recognition system for occlusion targets of the
spherical amphibious robot was completed.

Step 4:The image acquisition module collects the RGB
image information of the working environment of the
spherical amphibious robot, and transmits the RGB image
information to the Raspberry Pi through the UART serial port
of the STM32F429. The Raspberry Pi loads the model
parameters generated in step 2 into the PVNet network to
predict the collected RGB images and obtain semantic
segmentation, vector fields pointing to two-dimensional
keypoints, and vector confidence score prediction results.
According to the obtained semantic segmentation prediction
results, the prediction vectors belonging to the pixel of the
target are voted based on the random sampling consensus
algorithm to obtain the coordinates of 9 two-dimensional
keypoints. Using the coordinates of 9 keypoints on the 3D
model of the target and the coordinates of 9 two-dimensional
keypoints projected on the RGB map of the target, the
corresponding relationship between 2D points and 3D points
is obtained. Calculate the 6D pose of the target object relative
to the camera through the Uncertainty-driven PnP algorithm.

Step 5:The edge computing control board Raspberry Pi
transmits the 6D pose estimation result obtained in step 4 to
the main control board STM32F429 through the UART serial
port for judging the next action of the amphibious robot.

C. Design of loss function
The PVNet network has three tasks: semantic

segmentation prediction, vector field prediction, and vector
confidence score prediction. Therefore, the loss function of
the network consists of three parts: vector field prediction loss
function, semantic segmentation loss function, and vector
confidence score prediction loss function. To demonstrate the
effectiveness of our proposed method, we use the same
semantic segmentation loss function and vector field loss
function as the original PVNet algorithm. The vector field
loss function is:
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∆��(�) = ���(�) − ��(�) (2)

Type (1): � is a collection of target pixels, �1 is �����ℎ�1
function, ∆�� � |� and ∆�� � |� are the components of
∆�� � along the width and height of the image, � as the total
number of pixels that belong to the target object. Type (2):
���(�) is predictive vector, ��(�) is the label vector.

The semantic segmentation loss function is:

���� =−
1

�×� �=1
�×� ������� + (1 − ��)���(1 − ��)� (3)

Type (3): �� is the probability of predicting pixels as target
objects. �� is the label value. �,� refers to the width and
height of the RGB images.

Fig. 3 Influence of voting pixel Distance on Prediction Results

As shown in the fig 3, due to the small deviation of the
prediction vector of the pixel point far from the keypoint may
cause a large deviation of the prediction keypoint, and the
distance between a keypoint and a point on the prediction
vector line is only the minimum value, there is no maximum
value[5]. To solve this problem, we calculate the length of the
vertical line ��(�) from the keypoint k to the prediction vector
���(�) of pixel p, and normalize this length as the confidence
score of the prediction vector . The shorter the length of ��(�),
the higher the confidence score. The longer the length of
��(�) , the lower the confidence score. In this paper, the �2
loss function is used as the vector confidence score loss
function, and the specific function is:

���� = ���(���(�), ��(�)) (4)

��� = (1 − ����)2[(�� − ��)2 + (�� − ��)2] (5)

�� =
2
�
������( 1

�����
) (6)

������ =
1
� �=1

9
��� �� − ��� 2

2
�� (7)

Type (4): ���(�) is predictive vector, ��(�) is the label vector.
Type (5): �� and �� represent the horizontal and vertical
coordinates of pixel point p. �� and �� represent the
horizontal and vertical coordinates of the keypoint � . Type
(6):this function is a normalized function,where �� is the
coefficient. Type (7):this function is the L2 loss
function,where � is a collection of target pixels, � as the total
number of pixels that belong to the target. ��� is the vector
confidence score predicted by the network, �� is the vector
confidence score label value.

Ⅴ. EXPERIMENTSANDRESULTS

A. Training strategy
This paper uses the LINEMOD[16] dataset to train the

improved network model. To enhance the robustness of the
model and prevent overfitting, this paper augments the
training samples by rendering, cutting, resizing and rotating
methods[14]. Compared with the original PVNet network, the
method proposed in this paper only adds the confidence
prediction of the vector field to the last layer. Therefore, to
improve the training efficiency, we use the original PVNet
pre-trained model to initialize the corresponding part of the
network, and freeze the network parameters of all other layers
except the last layer, and only update the network parameters
of the last layer during the training process . In addition, the
Adam optimizer is selected as the optimizer of the network,
and the initial learning rate is 0.005. Every 20 epochs of
training, the learning rate is halved. The batch size of each
input to the network is set to 32, and our network is trained
for 200 epochs. The network architecture is implemented
using PyTroch 1.1.0 and trained on two Tesla V100 GPUs.

B. Evaluation metrics
In this paper, two general evaluation strategies are used

to evaluate our method: 2D projection metric[15] and average
3D distance of model points (ADD) metric[16].

The 2D projection evaluation index is used to reflect the
proximity of the 2D projection points of the 3D model of the
target object using the ground-truth pose and the estimated
pose respectively. Specifically, first calculate the 2D projected
coordinates of the 3D model point set of the target object
under the ground-truth pose and the estimated pose
respectively. Then calculate the Euclidean distance between
the two projected coordinates. A estimated pose is considered
correct if the average distance between the 3D model
projected points of the estimated pose and the ground-truth
pose is less than five pixels.

ADD metric calculates the mean distance between 3D
model points transformed by the estimated pose and the
ground-truth pose.when the mean distance is less than 10% of
the model diameter, the estimated pose is considered as
correct. For symmetric objects, we use the ADD-S metric,
which is different from ADD, where the average distance is
computed from the nearest point distance after pose



transformation. In the remainder of this paper, for the sake of
brevity, these two indicators are denoted as ADD.

C. Comparison with the state-of-the-art methods
We compared the accuracy of the proposed method with

state-of-the-art 6D pose estimation methods on the
LINEMOD dataset and the OCCLUSION_LINEMOD dataset.

TABLE I
2D METRIC COMPARISON ON LINEMOD DATASET

methods BB8 Tekin PVNet OURS
duck 81.2 94.65 98.02 98.12
glue 89.0 96.53 98.45 98.49
ape 95.3 92.10 99.23 99.46

TABLE II
ADD METRIC COMPARISON ON LINEMOD DATASET

methods BB8 Tekin PVNet OURS
cat 45.2 41.82 79.34 79.94
duck 32.8 27.23 52.58 54.41
glue 27.0 80.02 95.66 95.57
ape 27.9 21.62 43.62 44.50

TABLE III
2D METRIC COMPARISON ON OCCLUSION LINEMOD DATASET

methods Tekin PoseCNN Oberweger PVNet OURS
cat 3.62 10.4 65.1 65.12 65.72
duck 5.07 31.8 61.4 61.44 64.12
glue 4.70 13.8 54.9 55.37 56.33
ape 7.01 34.6 69.6 69.14 70.28

TABLE IV
ADD METRIC COMPARISON ON OCCLUSION LINEMOD DATASET

methods Tekin PoseCNN Oberweger PVNet OURS
cat 0.67 0.93 3.31 16.68 20.17
duck 1.14 19.6 19.2 25.24 27.40
glue 10.08 38.5 39.6 49.62 50.76
ape 2.48 9.6 17.6 15.81 16.23
Firstly reproduce the BB8[2], Tekin[18], and original

PVNet[4] algorithms on the Ubuntu operating system, and test
them on the LINEMOD dataset. The comparison results of
our proposed method with BB8, Tekin, and original PVNet on
the LINEMOD dataset on 2D projection metrics and ADD
metrics are shown in Table I and Table II, respectively.
Experimental results shows that the proposed method is
superior to BB8,Tekin and original PVNet algorithms in
ADD evaluation metric and 2D projection metric.

Then we reproduce the PoseCNN[8], Tekin[18],
Oberweger[19] and original PVNet[4] algorithms on the
Ubuntu operating system, and we directly test on the
Occlusion LINEMOD dataset[17] using models trained on the
LINEMOD dataset. The comparison results of our proposed
method with PoseCNN, Tekin, Oberweger and original
PVNet on the Occlusion LINEMOD dataset on 2D projection
metrics and ADD metrics are shown in Table III and Table IV,
respectively. Experimental results shows that the proposed
method is superior to PoseCNN, Tekin, Oberweger and
original PVNet algorithm in ADD evaluation metric and 2D
projection metric.

D. Experiments on land and water
Firstly install the 64-bit Raspberry Pi system on the edge

computing control board Raspberry Pi. Connect to the display
with an HDMI cable and connect to the wireless network.
Then built a deep learning environment on the Raspberry Pi,
and installed python3.9, pytorch1.6 and opencv packages.
Finally, the PVNet algorithm and the trained network model
were transplanted to the Raspberry Pi, and the 6D pose
estimation hardware system for occlusion targets of the
spherical amphibious robot was completed.

(a) Unoccluded target pose detection (b)Occluded target pose detection on
on land land

(c)Unoccluded target pose detection (d) Occluded target pose detection
on on the water surface the water surface

Fig. 4 Experimental results.

When the spherical amphibious robot works on water or
land, the image acquisition module collects the RGB image
information of the working environment, and transmits the
image to the Raspberry Pi through the UART serial port of the
STM32F429. The Raspberry Pi predicts the target in the RGB
image through the internal PVNet algorithm, and obtains the
pose prediction result. The edge computing control board
Raspberry Pi transmits the 6D pose prediction result to the
main control board STM32F429 through the UART serial
port for judging the next action of the amphibious robot. We
use the VNC host computer to connect to the Raspberry Pi,
observe the 6D pose estimation results of the spherical
amphibious robot to the target in real time, and obtain the
experimental results. The 6D pose visualization detection
results of the target are shown in fig 4, it can be observed that
the amphibious robot can accurately identify the 6D pose of
the occlusion target. In the picture, the Blue 3D bounding
boxes represent the predicts poses.



VI. CONCLUSIONS AND FUTUREWORK

This paper proposed a 6D pose estimation system of
occlusion targets for the spherical amphibious robot. We used
Miniconda to build the PyTorch1.1.0 environment and chose
the PVNet target 6D pose estimation algorithm. To improve
the accuracy of the PVNet algorithm, this paper added the
confidence score prediction of the prediction vector to the last
layer of the PVNet network, and designed a vector confidence
score loss function to train the network. Before generating
hypothetical keypoints, pixels with confidence scores lower
than a set threshold are screened out, so that the generated
hypothetical 2D keypoints are closer to the real 2D keypoints.
Furthermore, we compared our method with the Tekin,
PoseCNN, Oberweger and Pvnet algorithm, and demonstrate
the superiority of the proposed method. In the follow-up work,
we need to optimize the PVNet network model and voting
algorithm, reduce the calculation amount of the algorithm,
and improve the 6D pose detection speed of targets.
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